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Translating intersectionality to fair 
machine learning in health sciences

Elle Lett & William G. La Cava

Fairness approaches in machine learning 
should involve more than an assessment of 
performance metrics across groups. Shifting 
the focus away from model metrics, we reframe 
fairness through the lens of intersectionality, 
a Black feminist theoretical framework that 
contextualizes individuals in interacting 
systems of power and oppression.

There has been an explosion of research using machine learning (ML) 
to optimize health interventions. With this increase, concerns have 
risen that ML-based technologies may exacerbate health inequities1. 
In fair ML, investigators develop approaches that prevent models from 
disproportionately harming already oppressed and excluded popula-
tions. A fundamental challenge to the field is defining (un)fairness 
itself. In practice, fair ML focuses on eliminating differences in model 
performance across groups defined by a subset of demographic traits. 
However, we argue that this oversimplification has limited use in pre-
venting ML models from becoming an adverse digital health determi-
nant. Populations subjected to severe inequities in healthcare access, 
treatment and outcomes experience many intersecting systems of 
power and oppression. Furthermore, equilibrating model performance 
across groups does not guarantee equitable health outcomes when 
ML tools are deployed.

Intersectionality is particularly suited to address these chal-
lenges based on the two ‘arms’ of the framework: critical inquiry and 
critical praxis2. Critical inquiry relates to how we capture the effect of 
societal-level discrimination in modelling, and how, and for whom, 
(un)fairness is measured. Critical praxis requires expanding fairness 
beyond the narrow lens of model performance metrics, motivating us 
to identify more equitable approaches throughout the ML pipeline, 
including task definition, feature engineering, data processing, model 
training, validation, deployment and updating.

Translating core principles to fairness in ML
Collins and Bilge2 articulate six core ideas for intersectionality (Table 
1). For illustration, we consider the hypothetical task of predicting 
cardiovascular events among a cohort of US hospital patients inclusive 
of Black transgender women. The first two ideas — social inequality and 
intersecting power relations — are best understood together. In relation 
to our task, the social inequalities in access to routine, high-quality 
primary care and health insurance for Black transgender individuals are 
due, in part, to intersecting oppressive power systems such as racism3 
and transphobia4. In addition, understanding intersecting power rela-
tions requires a recognition of the multilevel nature of discrimination. 
On an interpersonal level, transgender individuals face discrimination 

and bias that results in avoidance, denial, or poorer quality healthcare. 
On a structural level, Black individuals are disproportionately segre-
gated into ‘food deserts’ — geographical regions in which residents 
have limited access to affordable and nutritious food (such as fresh 
produce), with a related increased likelihood of adverse cardiovascular 
outcomes5. These inequalities and power relations directly map onto 
bias in ML as characteristics of the generating mechanism for training 
data. Decreased access to and frequency of healthcare leads to under-
representation and increased missingness in training data1. Providers 
directly impact data quality when practicing biased care that varies 
treatment assignment or outcomes by social identities6. Together, 
these processes that generate social inequalities also coalesce to create 
data that biases models.

Social context relates to transportability of ML models. Power 
and oppression vary spatiotemporally. Anti-Black racism in the USA 
has unique manifestations, particularly in the form of racialized police 
violence7. For our hypothetical task, beyond mortality and injury effects 
of police violence, there are potential deleterious mental health8 and 
gendered physical health effects on blood pressure and diabetes9 that, 
if measured properly, may improve the accuracy of cardiovascular 
outcome predictions for Black trans women in the USA. However, that 
model would not transport to predictions for Black trans women in 
Brazil or the UK where the specific manifestations of anti-Black racism 
differ. Social context similarly varies on the subnational level, impeding 
transportability of models between regions within a country.

Relationality and complexity have broad implications for ML and 
fairness. The former emphasizes connectedness among social identi-
ties and systems, dissolving rigid boundaries between constructs 
such as race and class and highlighting how they are co-constituted: a 
racialized system is inherently classist and gendered. This concept is 
strongly related to intersecting power systems but also highlights the 
challenges of interpretability in ML; particularly for demographic and 
social inequality measures, it may be challenging to parse the individual 
contribution of a single feature to predictive accuracy.

Complexity emphasizes the intrinsic challenges of applying inter-
sectionality, including selecting among the various definitions of fair-
ness. For example, statistical parity, in which the prediction rate for an 
outcome must be equivalent, may be inappropriate when baseline class 
membership varies substantially by group, such as in our hypothetical 
task with cardiovascular disease. Equalizing false positive and/or false 
negative rates may be more appropriate. However, these definitions 
have theoretical trade-offs, both with overall accuracy10 and between 
definitions11, so selection must be tailored to the research question. 
Notably, recent empirical work has shown that large fairness gains can 
be made with negligible accuracy losses across diverse data and health 
policy applications, reinforcing the case for building fairness-aware 
models12. Complexity also suggests that some scenarios are inap-
propriate for ML tools; the real-world context of discrimination may 
preclude building an ML model that is sufficiently equitable to avoid 
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built on data from academic health systems, which often serve popula-
tions that differ from community hospitals. Deploying models trained 
on data that excludes marginalized groups can amplify existing health 
inequities. Therefore, we need to re-imagine dataset construction 
to prospectively address representation deficits. Academic centres 
can pool data from nearby community hospitals with similar social 
contexts to increase the sample size of intersectional marginalized 
groups. Importantly, there is a potential trade-off with overall predic-
tion accuracy as pooled data sources become more dissimilar, but 
this may be tempered by improvements in group-specific prediction 
accuracy, particularly among populations that often carry the high-
est disease burden. Defining which populations to enrich for in train-
ing data should be based on the specific disease context, prediction 
task, and intervention. For example, a model trained for predicting 
triple-negative breast cancer treatment response should enrich for 
Black women with the disease, as they are subject to a disproportionate 
incidence and mortality burden15.

Data pre-processing
Pre-processing features related to social contexts is an exercise in 
political power. The common practice of collapsing underrepresented 
groups decides who ‘counts’ and to whom a model must be fair. For 
Indigenous populations in the USA, the collapse of Native Americans 
into a heterogenous ‘Other Race’ category, or their exclusion from 
analysis, has contributed to their erasure from public health statis-
tics and the scientific record16. Regarding ML fairness, such practices 
obscure model biases that impact minoritized communities. These 
practices are enforced under the guise of statistical sample size limi-
tations and become default without interrogation. We advocate for 
disaggregation and transparent reporting of how demographic data are 
treated in ML models with emphasis on potential biases introduced by 
pre-processing. Disaggregation must be tailored, emphasizing groups 
who are marginalized within the specific context of the prediction task 
and implementation environment while balancing privacy concerns 
to prevent introducing new harms.

Feature engineering
Most ML fairness focuses on social identities (such as race and gender) 
and algorithms that satisfy group fairness constraints, imposing (near) 
equality of some metric across groups defined by shared demographic 
traits. This approach flattens the multilevel interfaces of power and 
privilege (such as racism and sexism) into individual characteristics. 
However, social identities function as imperfect proxies for social 
context, limiting the predictive power of models built exclusively on 
these features.

In public health and sociology there is extensive literature on 
measuring racism as a multidimensional system and process17, with 
extensions to sexism18 and other forms of discrimination. These 
approaches conceptualize discrimination as latent constructs esti-
mated by linking several data sources on social inequalities (such as 
economic resources, housing access, carceral data) and/or laws and 
policies at various levels of geographic granularity. Recent work has 
begun to illustrate how measures of social determinants of health can 
improve predictive accuracy of ML models leaving room for contin-
ued expansion of similar approaches19. Also worth noting are recent 
causal approaches that conceptualize fairness as multi-level with 
macro-level causes impacting model performance for individuals 
based on protected attributes20. These approaches are unified in 
that they attempt to capture the complexity of how socio-structural 

causing harm to populations already made vulnerable by intersecting 
power relations.

The last core idea, social justice, is straightforward: the goal of fair 
ML should be equitable health impacts. Ideally, rather than eliminating 
differential model bias, healthcare ML should reduce health inequities 
and, for our hypothetical task, reduce the excess burden of cardiovas-
cular disease on Black trans women.

Community participation
Intersectionality centres oppressed and excluded communities as 
the ‘source’ of knowledge on how systems of discrimination impact 
their lives and their health. The current status quo of researchers 
defining prediction tasks without community input systematically 
excludes the perspectives of marginalized groups. Consistent with 
the social justice tenet, intersectional fairness requires that we use 
community-based participatory research (CBPR) frameworks and 
enable non-academics to help define the prediction task and oversee 
the development and implementation pipeline13. CBPR approaches 
must include adequate compensation for labour provided by com-
munity research partners to ensure that the process is equitable and 
non-extractive14.

Training dataset construction
Poor representation of marginalized communities in training data is 
a primary source of model bias1. Most healthcare-related ML tools are 

Table 1 | Intersectionality core ideas for ML researchers

Intersectionality core 
idea

Implications for ML and fairness

Social inequalities Data generating mechanism: Training data exhibits 
health inequities due to social inequalities (such as 
wealth, education and housing stability) that are 
driven by interconnected socio-structural systems 
of power and oppression.

Intersecting power 
relations and 
relationality

Social context Generalizability: Models built on a biased sample 
of participants subject to only a subset of the social 
contexts of the target population (for example, 
predominantly white, cisgender samples) will not 
generalize to the entire population
Transportability: Models built in one social 
context, such as predictions for Black individuals in 
the southeastern USA, may not transport to another, 
such as Black individuals in the Pacific Northwest.

Relationality Interpretability: Systems of discrimination and 
oppression are inter-related and co-constituted 
such that it may be difficult to parse the 
individual contributions to predictive accuracy of 
corresponding features.

Complexity Measuring (un)fairness: Selecting the appropriate 
fairness definitions in the model fitting step must 
be tailored to the specific prediction task, social 
context and data.
Discretion: Some use cases may not be appropriate 
for ML if data cannot sufficiently represent 
marginalized groups or tools cannot be fairly 
deployed.

Social justice Community participation: Incorporate and 
centre individuals from marginalized backgrounds 
throughout the ML pipeline
Impact: Use post-deployment studies to determine 
whether the benefits of ML tools are experienced 
equitably across groups and if corresponding 
health inequities are being decreased.
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systems interact with individuals to produce health and contribute 
to model (un)fairness.

Model training
Group fairness definitions and algorithms are commonly used to opti-
mize ML models. These approaches have three common limitations: 
(1) single-axis definitions of fairness; (2) dichotomization of privilege; 
and (3) group size dependence. The first limitation is most common: 
constraining fairness based on groups defined by a single protected 
attribute only accommodates a single axis of discrimination. Even 
among group fairness definitions that are multi-axis, there is a theory–
practice gap due to model fitting software that only allow one attribute, 
regardless of the definition21.

Dichotomization of privilege is another oversimplification of 
discrimination. Within a protected attribute, the severity of discrimi-
nation may vary between classes. Therefore, intersectionality requires 
fairness definitions that accommodate heterogeneity in violations 
along protected attributes. For example, in the USA, anti-Black and 
anti-Indigenous racism is uniquely pervasive and manifests across 
police brutality7, chronic illnesses, and politics3 in ways that are not 
as severe for other ethnoracial groups. Some approaches would col-
lapse all minoritized ethnoracial groups into a single ‘unprivileged’ 
group21. As a result, fairness violations among these groups are treated 
equivalently, regardless of different experiences of discrimination. This 
dichotomization of privilege violates principles of intersectionality 
and fails to optimize accuracy for populations that are most vulner-
able to harm.

Some fairness definitions consider several protected attributes 
simultaneously, in principle accounting for multiple axes of power 
and moving toward intersectional fairness. However, all incorporate 
a group size dependence that deprioritizes intersectional groups who 
are underrepresented in the training data. There are three common 
remedies: (1) including a population frequency weight in the fairness 
measure22; (2) imposing a threshold that excludes small groups from 
the fairness measure/algorithm23; and (3) specifying a Bayesian prior 
that smooths fairness estimates for small groups24.

These approaches control overfitting by improving the stability 
of fairness metric estimates. Without these constraints, estimates 
among groups with small sample sizes are less likely to generalize to 
future data. This highlights a tension between the theory of intersec-
tionality and the pragmatic considerations of statistical computation. 
Intersectionality centres and even prioritizes the many marginalized 
individuals who exist at the convergence of intersecting power systems. 
By contrast, for statistical necessity, these approaches de-emphasize 
or even exclude those very groups.

Validation, deployment and updating
As with training data curation, validation datasets should enrich 
for populations most at risk for harm. Specifically, we advocate for 
purposeful recruitment, data collection and pooling to increase 
the representation of marginalized groups in validation datasets. In 
addition, investigators should report performance metrics for each 
intersectional position, so that end-users know for whom it is most 
valid. For example, for a hypothetical model to identify patients who 
will not maintain antiretroviral therapy for HIV in the USA, the valida-
tion data might purposively sample Black women, who represented 
the greatest proportion of new HIV cases among women in 201825. 
Oversampling may inflate positive predictive value for these groups, 
which underscores the need for intersectional position-specific 

reporting of validation metrics. Recent work has also shown that using 
group-specific thresholds to equilibrate recall across groups can pro-
duce fair positive predictive value rates12.

Post-deployment studies are necessary to determine the effects of 
ML models. Clinical decision-making is multifactorial and integrates 
perspectives from patients, providers, administrators and payers, 
such that even ‘statistically’ fair models can widen health inequities. 
Therefore, health systems should conduct audits to ensure that the 
benefits from ML technologies are distributed equitably and, if not, 
collaborate with implementation scientists to identify system failures 
that drive inequities. Ideally, integration of new ML technology should 
be governed by community advisory boards of potential patients likely 
to be impacted. Impact evaluations should be continuous to account 
for model drift. Stakeholders should collaborate to pre-specify criteria 
for updating models or retiring them for severe fairness violations. 
These practices will ensure that ML does not worsen health inequities 
and may reduce them.

Conclusion
Fair ML has disproportionately focused on statistical definitions, fit-
ting algorithms and metrics, without situating the field in the context 
of an unjust society in which model outputs have consequences that 
can compound health inequities. We adapt intersectionality to fair ML 
through its two arms: (1) inquiry, emphasizing how we quantify and 
correct for algorithmic injustice in models; and (2) praxis, identifying 
processes that promote justice in the generation and implementation of 
new technologies throughout the ML pipeline. We hope intersectional 
ML fairness can extend fair ML from balancing predictive accuracy 
across populations to facilitating the equitable distribution of health 
in the world.
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